Diffractive EM Jet A_N at FMS with run 15 data updates and preliminary request

Xilin Liang

UC Riverside

Apr. 20, 2022

Outline

- Systematic uncertainty study
- Preliminary request

Apply energy correlation from simulation

- Detector level to particle level EM jet energy correlation from simulation.
 - Use 6th order polynomial to fit range [5,65] GeV, but apply [5, 10] GeV into correction.
 - Use linear fit for range [10, 65] GeV, but apply [10, 65] GeV into correction

Energy correction uncertainty study

 Change energy correction function to 5th order polynomial for systematic uncertainty study for this time.

EM jet energy uncertainty

- $\sigma_E = C \oplus R \oplus E$
 - C: Calibration uncertainty (2.5%)^[1]
 - R: Radiation damage and non-linear response uncertainty (0.5%)^[1]
 - E: Energy resolution and correction uncertainty (separate by different x_F bins)

After Energy correction	EM jet Energy	
x _F range	uncertainty (%)	x _F uncertainty
0.1- 0.15	15.64%	0.0196
0.15 - 0.2	4.34%	0.0076
0.2- 0.25	9.89%	0.0223
0.25 - 0.3	7.41%	0.0204

[1] Z. Zhu , Measurement of Transverse Single Spin Asymmetry for piO at Forward Direction in 200 and 500 GeV Polarized Proton-Proton Collisions at RHIC-STAR

Systematic uncertainty (Ring of fire)

- Ring of fire
 - Trigger: fms-sm-bs3
- Compare by with and without such trigger.

Systematic uncertainty (residual background effect)

- Systematic uncertainties for residual background effect mainly come from the cut for selecting signal from background.
 - Energy sum cut: change 108 GeV to 110 GeV
 - Small BBC ADC sum cut: change 100 to 105
 - Large BBC ADC sum cut: change 60 to 65

Polarization uncertainty

• $\sigma(P_{set}) = P_{set} \cdot \frac{\sigma(scale)}{P} \oplus \sigma_{set}(fill \ to \ fill) \oplus P_{set} \cdot \frac{\sigma(profile)}{P}$ • $\frac{\sigma(scale)}{P} = 3\%$ [1] • $\frac{\sigma(profile)}{D} = \frac{2.2\%}{\sqrt{M}} = 0.3\%$ [1] • $\sigma^2_{set}(fill \ to \ fill) = (1 - \frac{M}{N}) \frac{\sum_{fill} L_{fill}^2 \sigma^2(P_{fill})}{(\sum_{fill} L_{fill})^2}$ Close to 0 • $\sigma_{set}(fill \ to \ fill) = 0.3\%$ • $\sigma(P_{fill}) = \sigma(P_0) \oplus \sigma(\frac{dP}{dt}) (\frac{\sum_{run} t_{run} L_{run}}{L_{fill}} - t_0) \oplus \frac{\sigma(fill \ to \ fill)}{P} P_{fill} P_{fill}$ ^[2] • so $\sigma(P_{set}) = 3.0\%$

[1] W. B. Schmidke, <u>RHIC polarization for Runs 9-17</u>

[2] Z. Chang Example calculation of fill-to-fill polarization uncertainties

Summary for systematic uncertainty

- Systematic uncertainty mainly come from energy uncertainty, Ring of fire background, residual background.
 - Analyze separately by different x_F bins.
 - Energy uncertainty is accounted into x-axis (x_F, not shown in the preliminary plot)
 - Background uncertainties are accounted into y-axis (A_N , shown in the preliminary plot)
- The underlying events correction is not considered.
- Polarization uncertainty (3.0%) seems reasonable.

Preliminary request plot

- Diffractive EM jet A_N for run 15 FMS data.
- Statistics error and systematic error (in box) uncertainty are included for polarized and unpolarized beam A_N .
- Blue beam A_N is relatively large (blue points), but with negative value. Yellow beam A_N is close to 0 (red points).

Preliminary request page

 Drupal page for preliminary request: <u>https://drupal.star.bnl.gov/STAR/blog/liangxl/Run-15-diffractive-EM-jet-preliminary-request-0</u>

Back up

Total uncertainty table

Types of uncertainty x _F ranges	Ring of fire	Residual background effect	Summary
x_F :[0.1, 0.15]	40.01%	91.12%	99.51%
x_F :[0.15, 0.2]	6.91%	15.06%	16.57%
x_F :[0.2, 0.25]	14.66%	35.86%	38.73%
x_F :[0.25, 0.3]	17.94%	9.13%	20.13%